# Optimization of the Sliced Testis Steroidogenesis Assay

Carol S. Sloan, Amanda B. Goodman,
Rochelle Tyl
RTI International
June 2003



#### Background

- The DRP named several possible procedures to study steroidogenesis and its' ability to characterize the endocrine effects of various environmental contaminants, industrial substances and pesticides
  - **◆** Tissue culture
    - Purified cell preparations
    - Cell lines
  - ◆ Ovarian *in vitro* steroidogenesis assay
  - ◆ Testicular in vitro steroidogenesis assay



### Why Sliced Testis Assay?

- Minimal Cost
- Quick
- Uses Standard Laboratory Equipment
- Basic Laboratory Training
- Stable Preparation
- Uses Reduced Number of Animals
- Can be Standardized
- Well-defined endpoint in testosterone concentration
- Can be modified to use intermediate hormonal endpoints



# Optimization of the Sliced Testis Assay

This was planned to be Implemented in Two Phases



### Prototypical Sliced Testis Assay

- Testes are weighed and placed in DPBS buffer
- Each testis is sliced along the longitudinal axis into slices of proper weight
- Slices are placed with 5mL of media
- Incubated at 34°C in 5%CO<sub>2</sub> and 95% air on a shaker



#### Sliced Testis Assay

- At first time-point –baseline media is removed and discarded
- Fresh media is added and an aliquot is collected
- Half of the samples are challenged with a stimulant, such as hCG
- Aliquots are collected at 1, 2, 3 and 4 hours postchallenge
- Samples are analyzed for testosterone concentration in a RIA assay



## Technical Flow Illustration of Sliced Testis Assay



Figure 2. Technical Flow Illustration of the Sliced Testis Steroidogenesis Assay



## Phase 1: Preliminary Experimental Phase

- Establish whether a given level of each factor affects assay performance
- The factors are unlikely to have an interaction or at best a minimal interaction with another experimental factor
- An effect of one of these factors would require additional verification experiments after sensitivity analysis



### Phase I Design





# Phase II: Primary Experimental Phase

- Factors that may affect assay performance were tested
- These factors were divided into four sections where each section was composed of factors that might produce interactions



#### Phase II Design





#### Testosterone Radioimmunoassay

- RIA
- Used to measure testosterone concentration of the aliquots taken at various time-points
- Commercial kit
- Utilizes 125 I-testosterone and a testosterone-specific antibody affixed to tubes



#### Testosterone RIA

- Verification of the assay using Media 199 without phenol red
- Determination of assay accuracy, sensitivity, precision and parallelism







## Testosterone RIA Validation with M-199

| Tstosterone RIA Percent Recovery |              |       |       |  |  |  |  |  |
|----------------------------------|--------------|-------|-------|--|--|--|--|--|
|                                  | <b>50</b> μΙ | 25 μΙ | 10 μΙ |  |  |  |  |  |
| + 8 ng/ml                        | 113.8        | 133.3 | 149.0 |  |  |  |  |  |
| + 2 ng/ml                        | 129.5        |       |       |  |  |  |  |  |
| 0.5 ng/ml                        | 146.5        |       |       |  |  |  |  |  |

| Testosterone RIA Assay Parallelism |             |             |  |  |  |  |  |
|------------------------------------|-------------|-------------|--|--|--|--|--|
| 0 μΙ                               | 25 μΙ       | 10 μΙ       |  |  |  |  |  |
| ng/ml                              | 10.66 ng/ml | 11.92 ng/ml |  |  |  |  |  |
|                                    | <u> </u>    |             |  |  |  |  |  |

The Index between 50 and 25 10  $\mu$ l was 117.1%, between 25 and 10  $\mu$ l was 111.8% and between 50 and 10  $\mu$ l was 130.99%.

|                  |        | Testosteror<br>Intra-assa |       |       |
|------------------|--------|---------------------------|-------|-------|
|                  | Number | <b>50</b> μΙ              | 25 μΙ | 10 μΙ |
| Unspiked<br>M199 | 2      | Blanks                    |       |       |
| + 8 ng/ml        | 10     | 5.24%                     | 8.64% | 7.68% |
| + 2 ng/ml        | 10     | 6.09%                     |       |       |
| + 0.5 ng/ml      | 10     | 13.34%                    |       |       |



# Lactate Dehydrogenase (LDH) Assay

- Validation of the assay using Media-199 without phenol red
- Measuring the assay accuracy, sensitivity, and precision
- Performed at Laboratory Corporation of America





LDH-Media

Preclinical -- LabCorp Instrument: Hitachi





#### Phase I

- Tested:
  - Media Type
    - -Eagles MEM
    - -RPMI-1640
    - -Medium-199
  - Gaseous Atmosphere
    - $-5\% CO_2 / 95\%$  air
    - $-5\% CO_2 / 95\% O_2$
    - -Air
  - Rat Age
    - -11 weeks
    - -15 weeks
    - -22 weeks



### PHASE I: Experimental Design

Table 2. Summary of Experimental Factors for Phase 1 Optimization

| Factor<br>Identification |       | E                               | Coded Experimental Levels                  |            |    |   |    |
|--------------------------|-------|---------------------------------|--------------------------------------------|------------|----|---|----|
|                          | Units | 1                               | 2                                          | 3          | 1  | 2 | 3  |
| Media Type               | NA    | RPMI-1640                       | medium-199                                 | Eagles-MEM | -1 | 0 | +1 |
| Gaseous<br>Atmosphere    | NA    | 5% CO <sub>2</sub> /<br>95% air | 5% CO <sub>2</sub> /<br>95% O <sub>2</sub> | air        | -1 | 0 | +1 |
| Rat Age                  | wks   | 11                              | 15                                         | 22         | -1 | 0 | +1 |

NA = not applicable.



Based on Original-Scale Models Adjusted Mean Levels

| Level o<br>Indepe<br>Variabl | ndent                      |                |        | iables: V | of Deper<br>Vithout h<br>lation |        | Mean Levels of Dependent<br>Variables:<br>With hCG Stimulation |        |         |                                                  |  |  |
|------------------------------|----------------------------|----------------|--------|-----------|---------------------------------|--------|----------------------------------------------------------------|--------|---------|--------------------------------------------------|--|--|
| Media<br>(z1)                | Gas<br>(z2)                | Age<br>(z3)    | Y1     | Y2        | Y3                              | Y4     | Y1                                                             | Y2     | Y3      | Y4                                               |  |  |
| RPM 1-1640<br>(-1)           |                            | 3.55           | 5.05   | 6.14      | 6.99                            | 4.52*  | 10.08*                                                         | 18.11  | 25.30   |                                                  |  |  |
| Media 199<br>(0)             |                            | 3.95           | 5.64   | 6.83      | 7.92                            | 5.83   | 13.70                                                          | 23.41  | 34.01   |                                                  |  |  |
| Ea                           | gles M<br>(+1)             | E              | 3.67   | 5.24      | 6.62                            | 7.75   | 5.77                                                           | 13.34  | 21.38   | 31.26                                            |  |  |
| 5% CO                        | <sub>2</sub> / 95%<br>(-1) | Air            | 3.72   | 5.16*     | 6.31**                          | 7.50*  | 5.62                                                           | 12.43* | 20.40** | 30.39                                            |  |  |
| 5% CO                        | 2 / 95%<br>(0)             | O <sub>2</sub> | 4.12   | 6.37      | 7.97                            | 9.33   | 6.02                                                           | 17.10  | 31.25   | 45.05                                            |  |  |
| Air<br>(+1)                  |                            | Air 3.34*      |        | 4.40**    | 5.30**                          | 5.82** | 4.49**                                                         | 7.59** | 11.25** | 15.14                                            |  |  |
| 11 Weeks<br>(-1)             |                            | 3.86**         | 5.53*  | 6.59*     | 7.67*                           | 6.34   | 16.58                                                          | 28.33  | 38.71   |                                                  |  |  |
| 15 Weeks<br>(0)              |                            | 4.89           | 6.58   | 7.99      | 9.56                            | 6.91   | 14.50                                                          | 25.61  | 38.99   |                                                  |  |  |
| 22 Weeks<br>(+1)             |                            | 2.43**         | 3.83** | 5.01**    | 5.43**                          | 2.88** | 6.03**                                                         | 8.97** | 12.88   |                                                  |  |  |
| -1                           | T-1                        | Т              | 3.07** | 4.28**    | 5.44**                          | 6.01** |                                                                |        | -       | -                                                |  |  |
| -1                           | 0                          |                | 4.06   | 6.00      | 7.11*                           | 8.30   |                                                                | -      |         | <del>                                     </del> |  |  |
| -1                           | +1                         | 1              | 3.51*  | 4.86**    | 5.88**                          | 6.65** |                                                                |        |         |                                                  |  |  |
| 0                            | -1                         |                | 4.07   | 5.24**    | 6.48**                          | 7.60*  |                                                                |        |         |                                                  |  |  |
| 0                            | 0                          |                | 4.85   | 7.63      | 9.43                            | 11.03  |                                                                |        |         |                                                  |  |  |
| 0                            | +1                         |                | 2.94** | 4.04**    | 4.57**                          | 5.11** |                                                                |        |         |                                                  |  |  |
| +1                           | -1                         |                | 4.02   | 5.96      | 7.02*                           | 8.89   |                                                                |        |         |                                                  |  |  |
| +1                           | 0                          |                | 3.44*  | 5.48*     | 7.38*                           | 8.67   |                                                                |        |         |                                                  |  |  |
| +1                           | +1                         | 1              | 3.55*  | 4.29**    | 5.46**                          | 5.69** |                                                                |        |         | -                                                |  |  |
| -1                           | T                          | 1-1            |        |           |                                 |        | 5.43**                                                         | 15.00  | 28.51   | 38.78                                            |  |  |
| -1                           |                            | 0              |        |           |                                 |        | 5.40**                                                         | 9.68** | 17.65** | 25.55                                            |  |  |
| -1                           |                            | +1             |        |           |                                 |        | 2.73**                                                         | 5.55** | 8.18**  | 11.58                                            |  |  |
| 0                            |                            | -1             |        |           |                                 |        | 7.68                                                           | 20.02  | 34.14   | 46.02                                            |  |  |
| 0                            |                            | 0              |        |           |                                 |        | 7.05                                                           | 14.90  | 26.88   | 42.62                                            |  |  |
| 0                            |                            | +1             |        |           |                                 |        | 2.76**                                                         | 6.17** | 9.21**  | 13.40                                            |  |  |
| +1                           |                            | -1             |        |           |                                 |        | 5.90*                                                          | 14.71  | 22.34*  | 31.33                                            |  |  |
| +1                           | 1                          | 0              |        |           |                                 |        | 8.28                                                           | 18.93  | 32.30   | 48.80                                            |  |  |
| +1                           |                            | +1             |        |           |                                 |        | 3.13**                                                         | 6.37** | 9.50**  | 13.67                                            |  |  |



Shaded cell indicates highest mean estimated level.

\* Indicates that the mean level is significantly lower than the cell with the maximum estimated level, p=0.05.

<sup>\*\*</sup> Indicates that the mean level is significantly lower than the cell with the maximum estimated level, p=0.01.

#### Phase I Optimizations

- Medium-199 without phenol red
- Gaseous atmosphere of 5%  $CO_2 / 95\% O_2$
- Rats that were 11 weeks of age showed results similar to those that were 15 weeks of age, therefore rats 11-15 weeks can be used in the assay



#### Phase II

- To be tested:
  - Incubation Temperature
  - Incubation Vessel Type
  - Incubation Shaker Speed
  - Incubation Media Volume
  - hCG Concentrations
  - ◆ Testicular Fragment Size
  - Time Delay before starting the assay preparation
  - Organ Preparation Technique
  - Sample Aliquot Volume



**Table 6. Summary of Experimental Testis Preparation Factors for Optimization** 

| Factor Identification       | Units | Factor | Expe                       | erimental Lev              | Coded Experimental<br>Levels |    |   |    |
|-----------------------------|-------|--------|----------------------------|----------------------------|------------------------------|----|---|----|
|                             |       |        | 1                          | 2                          | 3                            | 1  | 2 | 3  |
| hCG Concentration           | IU/ml | X5     | 0.01                       | 0.1*                       | 1                            | -1 | 0 | +1 |
| Time Delay                  | hr    | X7     | 0.5                        | 1*                         | 2                            | -1 | 0 | +1 |
| Organ Preparation Technique | NA²   | X8     | Cold<br>buffered<br>saline | Warm<br>buffered<br>saline | Cold<br>media*               | -1 | 0 | +1 |
| Sample Aliquot Volume       | ml    | Х9     | 0.125                      | 0.25                       | 0.5*                         | -1 | 0 | +1 |

<sup>\*</sup>Prototypical value.



<sup>&</sup>lt;sup>a</sup> NA - not applicable.

**Table 4. Summary of Experimental Incubation Factors for Optimization** 

| Factor Identi-<br>fication Units |       | Factor     | Experimental Levels |           |      |           |    | Coded Experimental Levels |      |   |    |         |
|----------------------------------|-------|------------|---------------------|-----------|------|-----------|----|---------------------------|------|---|----|---------|
|                                  | Units | Name       | 1                   | 2         | 3    | 4         | 5  | 1                         | 2    | 3 | 4  | 5       |
| Incubation<br>Temperature        | °C    | <b>X</b> 1 | uph teat            | 34*       |      | 37        |    |                           | -1   |   | +1 |         |
| Incubation Vessel<br>Type        | NAª   | X2         | scintillation vial* | test tube |      |           |    | -1                        | +1   |   |    |         |
| Incubation Shaker<br>Speed       | NA    | Х3         |                     | none      | low  | high<br>* |    |                           | -1   | 0 | +1 |         |
| Incubation Media<br>Volume       | ml    | X4         |                     | 2.5       | 5*   | 10        |    | **                        | -1   | 0 | +1 | <b></b> |
| hCG Concentration                | IU/ml | X5         | 0.001               | 0.01      | 0.1* | 1         | 10 | -2                        | -1   | 0 | +1 | +2      |
| Fragment Size                    | mg    | Х6         | 25                  | 50        | 125  | 250*      |    | -0.8                      | -0.6 | 0 | +1 |         |

<sup>\*</sup> Prototypical value.

a NA - not applicable.



#### Technical Flow of Sliced Testis Assay



Figure 2. Technical Flow Illustration of the Sliced Testis Steroidogenesis Assay



### Phase II Optimization

Currently Being Analyzed

